
Polymorphisation: Improving Rust compilation times
through intelligent monomorphisation

David Wood (2198230W)

April 15, 2020
MSci Software Engineering with Work Placement (40 Credits)

ABSTRACT
Rust is a new systems programming language, designed to
provide memory safety while maintaining high performance.
One of the major priorities for the Rust compiler team is
to improve compilation times, which is regularly requested
by users of the language. Rust’s high compilation times are
a result of many expensive compile-time analyses, a com-
pilation model with large compilation units (thus requiring
incremental compilation techniques), use of LLVM to gen-
erate machine code, and the language’s monomorphisation
strategy. This paper presents a code size optimisation, im-
plemented in rustc, to reduce compilation times by intelli-
gently reducing monomorphisation through “polymorphisa-
tion” - identifying where functions could remain polymor-
phic and producing fewer monomorphisations. By reduc-
ing the quantity of LLVM IR generated, and thus reduc-
ing code generation time spent in LLVM by the compiler,
this project achieves 3-5% compilation time improvements
in benchmarks with heavy use of closures in highly-generic,
frequently-instantiated functions.

1. INTRODUCTION
Rust is a multi-paradigm systems programming language,

designed to be syntactically similar to C++ but with an ex-
plicit goal of providing memory safety and safe concurrency
while maintaining high performance. The first stable release
of the language was in 2015 and each year since 2016, Rust
has been the “most loved programming language” in Stack
Overflow’s Developer Survey [11, 12, 13, 14]. In the years
since, Rust has been used by many well-known companies,
such as Atlassian, Braintree, Canonical, Chef, Cloudflare,
Coursera, Deliveroo, Dropbox, Google and npm.

Each year, the Rust project runs a “State of Rust” sur-
vey, asking users of the language on their opinions to help
establishment development priorities for the project. Since
2017 [22, 19, 20], faster compilation times have consistently
been an area where users of the language say Rust needs to
improve.

There are a handful of reasons why rustc, the Rust com-
piler, is slow. Compared to other systems programming lan-
guages, Rust has a moderately-complex type system and
has to enforce the constraints that make Rust safe at com-
pilation time - analyses which take more time than those
required for a language with a simpler type system. Lots
of effort is being invested in optimising rustc’s analyses to
improve performance.

In addition, Rust’s compilation model is different from
other programming languages. In C++, the compilation
unit is a single file, whereas Rust’s compilation unit is a
crate1. While compilation times of entire C++ and entire
Rust projects are generally comparable, modification of a
single C++ file requires far less recompilation than modifi-
cation of a single Rust file. In recent years, implementation
of incremental compilation into rustc has improved recom-
pilation times after small modifications to code.

Rust generates machine code using LLVM, a collection of
modular and reusable compiler and toolchain technologies.
At LLVM’s core is a language-independent optimiser, and
code-generation support for multiple processors. Languages
including Rust, Swift, Julia and C/C++ have compilers us-
ing LLVM as a “backend”. By de-duplicating the effort of
efficient code generation, LLVM enables compiler engineers
to focus on implementing the parts of their compiler that are
specific to the language (in the “frontend” of the compiler).
Compiler frontends are expected to transform their internal
representation of the user’s source code into LLVM IR, an
intermediate representation from LLVM which enables opti-
misation and code-generation to be written without knowl-
edge of the source language.

While LLVM enables Rust to have world-class runtime
performance, LLVM is a large framework which is not fo-
cused on compile-time performance. This is exacerbated by
technical debt in rustc which results in the generation of
low-quality LLVM IR. Recent work on MIR2 optimisations
have improved the quality of rustc’s generated LLVM IR,
and reduced the work required by LLVM to optimise and
produce machine code.

Finally, rustc monomorphises generic functions. Monomor-
phisation is a strategy for compiling generic code, which du-
plicates the definition of generic functions for every instan-
tiation, producing significantly more generated code than
other translation strategies. As a result, LLVM has to per-
form significant work to eliminate or optimise redundant IR.

This project improves the compilation times of Rust projects
by implementing a code-size optimisation in rustc to elim-
inate redundant monomorphisation, which will reduce the
quantity of generated LLVM IR and eliminate some of the
work previously required of LLVM and thus improve compi-
lation times. In particular, the analysis implemented by this

1Crates are entire Rust projects, including every Rust file
in the project
2MIR is rustc’s “middle intermediate representation” and is
introduced in Section 3.1.3

1

project will detect where generic parameters to functions,
closures and generators are unused and fewer monomorphi-
sations could be generated as a result.

Detection of unused generic parameters, while relatively
simple, was deliberately chosen, as the primary contribution
of this work is the infrastructure within rustc to support
polymorphic MIR during code generation, which will enable
more complex extensions to the initial analysis (see further
discussion in Section 5.1). Despite this, there is ample ev-
idence in the Rust ecosystem, predating this project, that
detection of unused generic parameters could yield signifi-
cant compilation time improvements.

Within Rayon, a data-parallelism library, a pull request
[17] was submitted to reduce the usage of closures by moving
them into nested functions, which do not inherit generic pa-
rameters (and thus would have fewer unnecessary monomor-
phisations). Similarly, in rustc, the same author submitted
a pull request [16] to apply the same optimisation manually
to the language’s standard library.

Likewise, in Serde, a popular serialisation library, it was
observed [21] that a significant proportion of LLVM IR gen-
erated was the result of a tiny closure within a generic func-
tion (which inherited and did not use generic parameters of
the parent function, resulting in unnecessary monomorphisa-
tions). In this particular case, the closure contributed more
LLVM IR than all but five significantly larger functions.

This project makes all of these changes to rustc, Rayon
and Serde unnecessary, as the compiler will apply this opti-
misation automatically.

In Section 2, this paper reviews the existing research on
optimisations which aim to reduce compilation times or code
size through monomorphisation strategies. Next, Section 3
describes the polymorphisation analysis implemented by this
project in more detail and Section 4 presents a thorough
analysis of the compilation time impact of polymorphisa-
tion implemented in rustc. Finally, Section 5 summarises
the result of this research and describes future work that it
enables.

2. BACKGROUND

2.0.1 Monomorphisation-related Optimisations
Optimisation of monomorphisation to improve compila-

tion time is a subject that has received little attention. How-
ever, within the Java ecosystem, lots of literature exists on
addressing runtime performance impacts that result from
monomorphisation (or a lack thereof).

Ureche et al. [24] present a similar optimisation, “Mini-
boxing”, designed to target the Java Virtual Machine and
implemented in Scala. Homogeneous and heterogeneous ap-
proaches to generic code compilation are presented. Hetero-
geneous approaches duplicate and adapt code for each type
individually, increasing code size (also known as monomor-
phisation, the approach taken in Rust and C++). Ho-
mogeneous translation generates a single function but re-
quires data to have a common representation, irrespective of
type, which is typically achieved through pointers to heap-
allocated objects. Ureche et al. identify that larger value
types (e.g. integers) can contain smaller value types (e.g
bytes) and that this can be exploited to reduce the dupli-
cation necessary in homogeneous translations. When im-
plemented in the Scala compiler, performance matched het-
erogeneous translation and obtained speedups of over 22x

compared to homogeneous translation, with only modest in-
creases in code size.

Dragos et al. [3] contribute an approach for compila-
tion of polymorphic code which allows the user to decide
which code should be specialised (monomorphised). This
approach allows for specialised code to be compiled sepa-
rately and mixed with generic code. Their approach, again
implemented in Scala, introduces an annotation which can
be applied to type parameters. This annotation instructs the
compiler to specialise code for that type parameter. Generic
class definitions require that the approach presented must be
able to specialise entire class definitions while maintaining
subclass relationships so specialised and generic code can
interoperate. Evaluation is performed on the Scala stan-
dard library and a series of benchmarks where runtime per-
formance is improved by over 20x for code size increases
of between 16% and 161%, however this approach requires
programmers correctly identify functions to annotate.

Stucki et al. [18] identify that specialisation of generic
code, which can improve performance by an order of magni-
tude, is only effective when called from monomorphic sites
or other specialised code. Performance of specialised code
within these “islands” regresses to that of generic code when
invoked from generic code. Stucki et al’s implementation
provides a Scala macro which creates a “specialised body”
containing the original generic code, where type parameters
have Scala’s specialisation annotation. Dispatch code is then
added, which matches on the incoming type and invokes the
correct specialisation. While this approach induces runtime
overhead, this is made up for in the performance improve-
ments achieved through specialisation. Their approach is
implementable in a library without compiler modifications
and achieves speedups of up to 30x, averaging 12x when
benchmarked with ScalaMeter.

Ureche et al. [23] discuss efforts by the Java platform ar-
chitects in Project Valhalla to update the Java Virtual Ma-
chine (JVM)’s bytecode format to allow load-time class spe-
cialisation, which will enable opt-in specialisation in Java.
Java is contrasted to Scala, which has three generic compila-
tion schemes (erasure, specialisation and Ureche et al’s mini-
boxing). The interaction of these schemes can cause subtle
performance issues which also affect Project Valhalla. In
particular, miniboxed functions are still erased when invoked
from erased functions, and boxing is required at generic com-
pilation scheme boundaries. This paper presents three tech-
niques to eliminate the slowdowns associated with minibox-
ing. The authors validate their technique in the miniboxing
plugin for Scala, producing performance improvements of
2-4x.

These papers focus on languages based on the JVM due to
the performance impact that using primitives in generic code
can have. In order to preserve bytecode backwards com-
patibility, the JVM requires that value types be converted
to heap objects, typically through boxing, when interacting
with generic code. Scala has been of particular focus in this
research because of the inclusion of specialisation annota-
tions as a language feature.

2.0.2 Code Size Optimisations
In order to improve Rust’s compilation times, this project

implements an optimisation to reduce the quantity of gen-
erated LLVM IR. It is therefore relevant to review research
into optimisations which aim to reduce code-size.

2

Edler von Koch et al. [4] discuss a compiler optimisation
technique for reducing code size by exploiting the structural
similarity of functions. Structurally similar functions have
equivalent signatures and equivalent control flow graphs.
Edler von Koch et al. introduce a technique for merging
two structurally similar functions by combining the bodies
of both functions and inserting control flow constructs to se-
lect the correct instructions where the functions differ. The
original functions are replaced with stubs which then call
the merged function with an additional argument to select
the correct code path. The authors implemented this opti-
misation in LLVM and achieved code size reductions of an
average 4% in Spec CPU2006 benchmarks.

Debray et al. [2] present a series of transformations which
can be performed by the compiler to reduce code size. Trans-
formations are split into two categories, classical analyses
and optimisations and techniques for code factoring. Most
relevant to the techniques employed by this project is
redundant-code elimination. Redundant computations ex-
ist where the same computation has been completed pre-
viously and that result is guaranteed to still be available.
In their implementation, redundant code elimination tech-
niques were particularly effective at removing redundant
computation of global pointer values (on the Alpha proces-
sor where the techniques were implemented) when enter-
ing functions. Debray et al. evaluate the optimisations by
implementing them in a post-link-time optimiser, alto, and
comparing the code size of a set of benchmarks before-and-
after optimisation by alto, achieving over 30% reductions.

Kim et al. [7] present an iterative approach to the proce-
dural abstraction techniques described by Debray et al. Pro-
cedural abstraction identifies sequences of instructions (in-
struction patterns) which are repeated and creates a proce-
dure containing the pattern, replacing the original instances
with a call to the procedure. In traditional procedural ab-
straction approaches, such as those discussed in the orig-
inal paper [2], pattern identification is followed by a sav-
ing estimation before patterns are replaced. In contrast,
the approach presented by Kim et al. iterates global sav-
ing estimation and pattern replacement following pattern
identification. In eight benchmarks, an implementation tar-
geting a CalmRISC8 embedded processor, averaged a 14.9%
reduction in code size compared to traditional procedural
abstraction techniques. However, due to the small number
of instructions and registers on the CalmRISC8 processor,
generated code would present many opportunities to the op-
timisation which could skew results higher than might be
achieved on more common instruction sets.

Petrashko et al. [15] present context-sensitive call-graph
construction algorithms which exploits the types provided to
type parameters as contexts. They demonstrate through a
motivational example that context-sensitive call graph anal-
yses result in many calls being considered highly polymor-
phic and not able to be inlined. Through running analyses
separately in the context of each possible type argument
(possible through their context-sensitive call graph), the au-
thors are able to remove all boxing and unboxing in ad-
dition to producing monomorphic calls which enable Java’s
JIT to inline and aggressively optimise functions. Petrashko
et al. find that through use of the context-sensitive analy-
sis, performance improves by 1.4x and discovers 20% more
monomorphic call sites. Generated bytecode size was re-
duced by up to 5x and achieved the same performance on

code as when hand-optimised with annotations.

2.0.3 Compilation Time Optimisations
Much like research which aims to reduce code-size, re-

search into optimisations to reduce compilation time in more
varied scenarios can be valuable to identify optimisation op-
portunities being missed.

Han et al. [5] discuss a technique for reducing compi-
lation time in parallelising compilers. In this paper, the
authors inspect the OSCAR compiler, which parallelises C
or Fortran77 programs. OSCAR repeatedly applies multiple
program analysis passes and restructuring passes. After OS-
CAR’s second iteration, Han et al. identify that the OSCAR
will apply an analysis to a function irrespective of whether
the restructuring passes changed the function. Han et al.
propose an optimisation to reduce compilation time by re-
moving redundant analyses. Compilation time reductions of
27%, 13% and 19% are achieved for three large-scale propri-
etary real applications.

Leopoldseder et al. [9] present a technique to determine
when it is beneficial to duplicate instructions from merge
blocks to their predecessors in order to attain further optimi-
sation. The authors implement their approach, Dominance-
based duplication simulation (DBDS), in GraalVM JIT com-
piler, which introduces a constraint that the optimisation
must consider the impacts on compilation time. Leopoldseder
et al. identify that constant folding, conditional elimina-
tion, partial escape analysis/scalar replacement and read
elimination are achievable after code duplication has taken
place. Other code duplication approaches use backtracking
to tentatively perform duplication while maintaining the op-
tion to reverse the duplication if it is determined not prof-
itable. Backtracking approaches are compile-time intensive
and thus not suitable for JIT compilation. Leopoldseder et
al. choose to simulate duplication opportunities and then
fit those opportunities into a cost model which maximises
peak performance while minimising compilation time and
code size. The authors achieve performance improvements
of up to 40%, mean performance improvements of 5.89%,
mean code size increases of 9.93% and mean compilation
time increases of 18.84% across their benchmarks.

Unfortunately, none of these projects address the prob-
lem of reducing code-size when monomorphisation is used
exclusively as a strategy for compiling generic code.

3. POLYMORPHISATION
Polymorphisation, a concept introduced by this paper, is

an optimisation which determines when functions, closures
and generators could remain polymorphic during code gen-
eration.

Rust supports parameterising functions by constants or
types - these are known as generic functions and this feature
is similar to generics in other languages, like Java’s gener-
ics or C++’s templates. Generic functions and types are
a desirable feature for programmers as they enable greater
code reuse. When generating machine code, there are two
approaches to dealing with generic functions - monomorphi-
sation and boxing.

C++ and Rust perform monomorphisation, where multi-
ple copies of a function are generated for each of the types or
constants that the function was instantiated with. In con-
trast, Java performs dynamic dispatch, where each object is
heap-allocated and a single copy of a function is generated,

3

which takes an address.
In addition, Rust compiles to LLVM IR, the intermediate

representation of LLVM. LLVM IR doesn’t have any concept
of generics, so Rust must perform either dynamic dispatch
or monomorphisation.

The initial polymorphisation analysis implemented in this
project determines when a type or constant parameter to a
function, closure or generator is unused, and thus when this
would result in multiple redundant copies of the function
being generated. By generating fewer redundant monomor-
phisations of functions in the LLVM IR, there would be less
work for LLVM to do, reducing compilation times and code
size.

Types with unused generic parameters are disallowed by
rustc, but there are no checks for unused generic parameters
in functions. Despite this, it is assumed that it is rare for
programmers to write functions which have unused generic
parameters. However, closures inherit the generic parame-
ters of their parent functions and often don’t make use of
these parameters.

For example, consider the code shown in Listing 1, which
was taken from Serde, a popular Rust serialisation library.

1 fn parse_value<V>(

2 &mut self,

3 visitor: V,

4) -> Result<V::Value>

5 where

6 V: de::Visitor<'de>,
7 {

8 let peek = match self.parse_whitespace()? {

9 Some(b) => b,

10 None => return Err(

11 self.peek_error(

12 ErrorCode::EofWhileParsingValue)),

13 };

14

15 let value = match peek {

16 // ...

17 };

18

19 match value {

20 Ok(value) => Ok(value),

21 Err(err) => Err(

22 err.fix_position(

23 |code| self.error(code))),

24 }

25 }

Listing 1: Example from Serde

parse_value is a heavily used function which takes a sin-
gle type parameter, V, and is instantiated many times with
different types (a second type parameter from the surround-
ing block, R, is in scope too, which will also vary). This
function contains one tiny closure on line 16 which would be
monomorphised for each instantiation of parse_value. In
Serde, instantiations of this closure contributed more LLVM
IR than all but five larger functions in the library.

3.1 The Rust Compiler, rustc
This section introduces implementation details of rustc,

the Rust compiler, which are necessary for the implementa-

tion of polymorphisation.

3.1.1 Query System
Traditionally, compilers are implemented in passes, where

source code, an abstract syntax tree or intermediate repre-
sentation is processed multiple times. Each pass takes the
result of the previous pass and performs an analysis or op-
eration - such as lexical analysis, parsing, semantic analysis,
optimisation and code generation. Multi-pass compilers are
well-established in the literature, but the expectations on
compilers have changed in recent years.

Modern programming languages are expected to have high-
quality integration into development environments [10], and
assist in powering code completion engines and convenience
features such as jump-to-definition. Moreover, users ex-
pect this information quickly and while they are writing
their code (when it might not parse correctly or type-check).
In addition, many programming languages’ designs make it
hard or impossible to statically determine the correct pro-
cessing order, as expected by traditional multi-pass compiler
architectures.

rustc’s query system enables incremental and “demand-
driven”compilation, and is integral to satisfying these expec-
tations. Polymorphisation, as implemented in this project,
uses the query system and limitations of the query system
are reflected in its design (see Section 3.1.4).

In the query system, the compiler can be thought of as
having a “database” of knowledge about the current crate,
and queries are a mechanism for asking questions to the
compiler. When compilation starts, the compiler’s database
is empty and is populated by queries when they are executed.

Queries consist of a name which identifies the query; a
key that specifies what information is being requested; a
result type; and a provider function that is executed when
the result needs to be computed (i.e. it isn’t already present
in the database).

However, there are some restrictions:

• Query keys and results must be deeply immutable3.

• Provider functions must be pure - the same input must
always produce the same output.

• Provider functions must have two parameters - the
query key and a reference to the query context (the
rest of the database).

Query results are cached and if a query is invoked with the
same key again, the result will be returned from the cache.
Caching is critical for making the query system efficient and
is why providers must be pure functions.

When no queries have been executed, the query system
provides access to immutable input data. Since queries can
only access other queries and the query context, without
input data, queries would have no information to compute
their result from.

At the start of compilation, rustc’s driver creates a query
context and invokes a top-level query, e.g. compile. compile
would invoke other queries, such as codegen-crate, which
would invoke further queries, eventually resulting in the

3Deeply immutable values do not have interior mutability.
For example, if a query result were modified, then invoking
the query again and retrieving the same query result from
cache would not have those same modifications.

4

actual parsing from input data. As such, queries form a
directed-acyclic graph.

Queries could form a cyclic graph by invoking themselves.
To prevent this, the query engine checks for cyclic invoca-
tions and aborts execution.

As all queries are invoked through the query context,
accesses can be recorded and a dependency graph can be
produced. To avoid unnecessary computation when inputs
change, the query utilises the dependency graph in the “red-
green algorithm” used for query re-evaluation.
try_mark_green is the primary operation in the red-green

algorithm. Before evaluating a query, the red-green algo-
rithm checks each of the dependencies of the query. Each
dependent query will have a colour: red, green or unknown.
Green queries’ inputs haven’t changed, and the cached re-
sult can be re-used. Red queries’ inputs have changed, and
the result must be recomputed.

If the dependency’s colour is unknown then
try_mark_green is invoked recursively. Should the depen-
dency be successfully marked as green, then the algorithm
continues with the next of the current query’s dependencies.
However, if the dependency was marked as red, then the de-
pendent query must be recomputed. When the result of the
dependent query was the same as before re-execution then
it would not invalidate the current node.

3.1.2 Types and Substitutions
rustc represents types with the ty::Ty type, which repre-

sents the semantics of a type (in contrast to
hir::Ty from the HIR (high-level IR), rustc’s desugared
AST, which represents the syntax of a type).
ty::Ty is produced during type inference on the HIR, and

then used for type-checking. Ty in the HIR assumes that any
two types are distinct until proven otherwise, u32 (Rust’s 32-
bit unsigned integer type) at line 10, column 20 would be
considered different to u32 at line 20, column 4.
ty::Ty<'tcx> is a type alias to &'tcx TyS (a type struc-

ture) where the primary implementation lives. Types are
allocated in an arena in the global type context, where they
are canonicalised and interned (allocating once for each dis-
tinct instance of the type). TyS has a kind field (of type
TyKind<'tcx>) which is an enum defining all of the different
kinds of types in the compiler. Ty is a recursive type which
forms a tree and allows for representation of arbitrarily com-
plex types.

Rust functions and types can be parameterised by generic
parameters. Generic parameters can be types, constants or
lifetimes. Generic parameters in Rust are similar to tem-
plates in C++ or generics in Java, and allow for a function
or type to be used with many different concrete data types.

In rustc, polymorphic types are stored separately from
the concrete types (or other generics) that are used with the
type.
SubstsRef<'tcx> is used to represent the “substitutions” for
a type (conceptually, a list of types that are to be substituted
with the generic parameters of the type). SubstsRef<'tcx>
is a type alias of ty::List<GenericArg<'tcx>>, where
GenericArg is a space-efficient wrapper around
GenericArgKind. GenericArgKind represents what kind of
generic parameter is present - type, lifetime or const.
Ty contains TyKind::Param instances, each of which has

a name and index. Only the index is required, the name is
for debugging and error reporting. The index of the generic

parameter is an integer which determines its order in the
list of generic parameters in scope. To perform a substitu-
tion, the subst function on Ty is invoked with a SubstsRef

which replaces each TyKind::Param with the type from the
SubstsRef with the corresponding index.

The details of how generic parameters are implemented
within rustc are directly leveraged by the polymorphisation
implemented in this project, as well as the TypeFoldable

infrastructure used to implement susbts.
TypeFoldable is a trait (Rust’s equivalent of a Java in-

terface) implemented by types that embed type informa-
tion, allowing the recursive processing of the contents of the
TypeFoldable. TypeFolder is another trait used in con-
junction with TypeFoldable. TypeFolder is implemented
on types (like SubstsFolder, which is used by subst) and
is used to implement behaviour when a type, const, re-
gion or binder is encountered in a type. Used together, the
TypeFolder and TypeFoldable traits allow for traversal and
modification of complex recursive type structures.

3.1.3 MIR
MIR (mid-level IR) is an intermediate representation of

functions, closures, generators and statics used in rustc, con-
structed from the HIR and type inference results. It is a sim-
plified version of Rust that is better suited to flow-sensitive
analyses. For example, all loops are simplified through use
of a “goto” construct; match expressions are simplified by
introducing a “discriminant” statement; method calls are re-
placed with explicit calls to trait functions; and drops/panics
are made explicit.

MIR is based on a control-flow graph, composed of basic
blocks. Each basic block contains zero or more statements
with a single successor, and end with a terminator, which
can have multiple successors.

Memory locations on the stack are known as “locals” in
the MIR. Locals include function arguments, temporaries
and local variables. Each local is identified by an index.
The return value of a MIR body is stored into the local with
index zero.

There are a handful of other key concepts in the MIR:
“Places”are expressions which identify a location in memory;
“Rvalues” are expressions which produce a value, these exist
on the right-hand side of an assignment; “Operands” are
arguments to rvalues, which can be constants or reads from
places.

1 use std::collections::HashSet;

2

3 fn main() {

4 let mut set = HashSet::new();

5 set.insert(1);

6 set.insert(2);

7 set.insert(3);

8 }

Listing 2: Example for inspecting MIR

Within rustc, the MIR is a set of data structures, but
can be dumped textually for debugging. Consider the MIR
for the Rust code in Listing 2, it starts with the name and
signature of the function in a pseudo-Rust syntax, shown in
Listing 3.

Following the function signature, the variable declarations

5

1 // WARNING: This output format is intended for

2 // human consumers only and is subject to

3 // change without notice. Knock yourself out.

4 fn main() -> () {

5 ...

6 }

Listing 3: Function prelude in MIR

for all locals are shown (Listing 4). Locals are printed with
a leading underscore, followed by their index. Temporaries
are intermingled with user-defined variables.

1 let mut _0: ();

2 let _2: bool;

3 let mut _3: &mut std::collections::HashSet<i32>;

4 let _4: bool;

5 let mut _5: &mut std::collections::HashSet<i32>;

6 let _6: bool;

7 let mut _7: &mut std::collections::HashSet<i32>;

Listing 4: Variables in MIR

To distinguish which locals are temporaries and which are
user-defined variables, the MIR output then displays debug-
info for user-defined variables, such as set, shown in Listing
5.

Within each scope block, user-defined variables are listed
with the user’s name from the variable and the variable’s
place. In this example, the mapping is direct, but the com-
piler can store multiple user variables in a single local, and
perform field accesses or dereferences.

Scope blocks represent the lexical structure of the source
program (used in generating debuginfo). Each statement
and terminator in the MIR output (omitted in these snip-
pets) is followed by a comment which states which scope it
exists in.

1 scope 1 {

2 debug set => _1;

3 }

Listing 5: Scope in MIR

All of the remaining MIR output is used by the basic
blocks of the current MIR body, starting with bb0, shown
in Listing 6. Basic blocks are numbered from zero upwards,
and contain statements followed by terminator on the last
line.
bb0 starts with a StorageLive statement, which indi-

cates that the local _1 is live (until a matching StorageDead

statement, not included in this listing). Code generation
uses StorageLive statements to allocate stack space. At
the end of bb0, there is a Call terminator, which invokes
HashSet::new and resumes execution in bb2. While termi-
nators can have multiple successors, because HashSet::new

does not require cleanup if it panicked, there is no panic
edge.
bb2 has two StorageLive statements followed by an Assign

statement on line 4 into a temporary, creating a mutable bor-
row of _1, before ending the block with a Call terminator
invoking HashSet::insert.

1 bb0: {

2 StorageLive(_1);

3 _1 = const

std::collections::HashSet::<i32>::new() ->

bb2;

↪→

↪→

4 }

Listing 6: bb0 in MIR

1 bb2: {

2 StorageLive(_3);

3 StorageLive(_3);

4 _3 = &mut _1;

5 _2 = const

std::collections::HashSet::<i32>::insert(

move _3, const 1i32) -> [return: bb3,

unwind: bb4];

↪→

↪→

↪→

6 }

Listing 7: bb2 in MIR

There are other basic blocks in the MIR for Listing 2, but
bb0 and bb2 are sufficient for understanding the key concepts
of the MIR.

In addition to StorageLive, Assign, StorageDead, there
are a selection of other statements:

• Assign statements write an rvalue into a place.

• FakeRead statements represent the reading that a pat-
tern match might do, and exists to improve diagnos-
tics.

• SetDiscriminant statements write the discriminant of
an enum variant (its index) to the representation of an
enum.

• StorageLive and StorageDead starts and ends the live
range for storage of a local.

• InlineAsm executes inline assembly.

• Retag retags references in a place - this is part of the
“Stacked Borrows” aliasing model by Jung et al. [6].

• AscribeUserType encodes a user’s type ascription so
that they can be respected by the borrow checker.

• Nop is a no-op, and is useful for deleting instructions
without affecting statement indices.

Likewise, in addition to Call, there are various other ter-
minators:

• Goto jumps to a single successor block.

• SwitchInt evaluates an operand to an integer and jumps
to a target depending on the value.

• Resume and Abort indicate that a landing pad is fin-
ished and unwinding should continue or the process
should be aborted.

• Return indicates a return from the function, assumes
that _0 has had an assignment.

6

• Drop and DropAndReplace drops a place (and option-
ally replaces it).

• Call invokes a function.

• Assert panics if a condition doesn’t hold.

• Yield indicates a suspend point in a generator.

• GeneratorDrop indicates the end of dropping a gener-
ator.

• FalseEdges and FalseUnwind are used for control flow
that is impossible, but required for borrow check to be
conservative.

Closures - similar to anonymous functions or lambdas in
other languages - which can capture variables from the par-
ent environment, are also represented in the MIR. Functions
and closures are represented almost identically in the MIR.
Closures inherit the generic parameters of the parent func-
tion, and have additional generic parameters tracking the
closure’s inferred kind, signature and upvars (captured vari-
ables).

Generators are suspendable functions, which operate sim-
ilarly to closures, but can yield values in addition to return-
ing them. Like closures, generators are represented almost
identically to functions in the MIR, but have extra generic
parameters which track the generator’s inferred resume type,
yield type, return type and witness (an inferred type which
is a tuple of all types that could up in a generator frame).

rustc provides a pair of visitor traits (depending on whether
mutability is required) which types can implement to sim-
plify traversal of the MIR.

3.1.4 Shims
There are some circumstances where rustc will generate

functions during compilation, these functions are known as
shims, and they are often specialised for specific types.

Drop glue is an example of a shim generated by the com-
piler. Rust doesn’t require that the user write a destruc-
tor for their type, any type will be dropped recursively in
a specified order. To implement this, rustc transforms all
drops into a call to drop_in_place<T> for the given type.
drop_in_place’s implementation is generated by the com-

piler for each T. There are a variety of shims generated by
the compiler:

• Drop shims implements the drop glue required to deal-
locate a given type.

• Clone shims implement cloning for a builtin type, like
arrays, tuples and closures.

• Closure-once shims generate a call to an associated
method of the FnMut trait.

• Reify shims are for fn() pointers where the function
cannot be turned into a pointer.

• FnPtr shims generate a call after a dereference for a
function pointer.

• Vtable shims generate a call after a dereference and
move for a vtable.

During code generation, the MIR being translated into
LLVM IR (or Cranelift IR) has no substitutions applied,
therefore all of the generic parameters in the function are
still present. Where required, substitutions (those collected
during monomorphisation, as will be discussed in Section
3.1.5) are applied to types. However, for shims, these sub-
stitutions are typically redundant as the MIR of the shim
is generated specifically for a type, and do not have any
remaining generic parameters.

3.1.5 Monomorphisation
In order to determine which items will be included in the

generated LLVM IR for a crate, rustc performs monomor-
phisation collection. Non-generic, non-const functions map
to one LLVM artefact, whereas generic functions can con-
tribute zero to N artefacts depending on the number of in-
stantiations of the function. Monomorphisations can be
produced from instantiations of functions defined in other
crates.

“Mono items” are anything that results in a function or
global in the LLVM IR of a codegen unit. Mono items can
reference other mono items, for example, if a function baz

references a function quux then the mono item for baz will
reference the mono item for quux (typically this results in the
generated LLVM IR for baz referencing the generated LLVM
IR for quux too). Therefore, mono items form a directed
graph, known as the “mono item graph”, which contains all
items necessary for codegen of the entire program.

In order to compute the mono item graph, the collector
starts with the roots - non-generic syntactic items in the
source code. Roots are found by walking the HIR of the
crate, and whenever a non-generic function, method or static
item is found, a mono item is created with the DefId of
the item and an empty SubstsRef (since the item is non-
generic).

From the roots, neighbours are discovered by inspecting
the MIR of each item. Whenever a reference to another
mono item is found, it is added to the set of all mono items.
This process is repeated until the entire mono item graph
has been discovered. By starting with non-generic roots,
the current mono item will always be monomorphic, so all
generic parameters of neighbours will always be known. Ref-
erences to other mono items can take the form of function
calls, taking references to functions, closures, drop glue, un-
sizing casts and boxes.

1 fn main() {

2 bar(2u64);

3 }

4

5 fn foo() {

6 bar(2u32);

7 }

8

9 fn bar<T>(t: T) {

10 baz(t, 8u16);

11 }

12

13 fn baz<F, G>(f: F, g: G) {

14 }

Listing 8: Monomorphisation Example

7

For example, consider the code in Listing 8. Monomorphi-
sation will start by walking the HIR of the crate and looking
for non-generic syntactic items. After this step, the set of
mono items will contain the functions main and foo, both
of which have no generic parameters.

Next, monomorphisation will traverse the MIR of each
root, looking for neighbours. In main, the terminator of bb0
(shown in Listing 9) references the bar function, with the
substitutions u64.

1 bb0: {

2 StorageLive(_1);

3 _1 = const bar::<u64>(const 2u64) -> bb1;

4 }

Listing 9: bb0 of main

This will result in a mono item for bar being added to
the set of mono items, and being visited for neighbours. foo
was also determined to be a root, so its MIR (shown in
Listing 10) will also be visited to find neighbours, resulting
in another mono item for bar being added to the set, with
the substitution u32.

1 bb0: {

2 StorageLive(_1);

3 _1 = const bar::<u32>(const 2u32) -> bb1;

4 }

Listing 10: bb0 of foo

bar’s MIR (shown in Listing 11) will be visited twice, once
for u32 and once for u64, each time adding baz to the set of
mono items with different substitutions.

1 bb0: {

2 StorageLive(_2);

3 StorageLive(_3);

4 _3 = move _1;

5 _2 = const baz::<T, u16>(move _3, const 8u16)

-> bb1;↪→

6 }

Listing 11: bb0 of bar

Finally, baz will be visited twice for neighbours, with sub-
stitutions u32, u16 and u64, u16, but as it does not refer-
ence any other mono items, it does not add any new mono
items to the set.

3.2 Analysis
Implementation of this project first requires a functioning

polymorphisation analysis to determine when generic pa-
rameters are unused. To do so, a new query is introduced,
used_generic_params (as shown in Listing 12), which takes
a DefId identifying the item being analysed - e.g. the func-
tion, method, closure or generator - and returns a BitSet.
used_generic_params’s return type has a domain size

equal to the number of generic parameters in scope for the
item being analysed. The analysis starts by returning early
for items which have no generic parameters in scope or where
there is no MIR available (e.g. trait methods without a de-
fault implementation), this is shown in Listing 13.

1 query used_generic_params(key: DefId) ->

BitSet<u32> {↪→

2 desc {

3 |tcx| "determining which generic

parameters are used by `{}`",
tcx.def_path_str(key)

↪→

↪→

4 }

5 }

Listing 12: Query definition

1 fn used_generic_params(

2 tcx: TyCtxt<'_>,
3 def_id: DefId,

4) -> BitSet<u32> {

5 let generics = tcx.generics_of(def_id);

6 let count = generics.count();

7 // Exit early when there are no parameters to

8 // be unused.

9 if count == 0 {

10 return BitSet::new_filled(count);

11 }

12 // Exit early when there is no MIR available.

13 if !tcx.is_mir_available(def_id) {

14 return BitSet::new_filled(count);

15 }

16 // ...

17 }

Listing 13: Trivial cases

As described in Section 3.1.2, closures and generators have
additional “synthetic” generic parameters. These parame-
ters must be considered used for code-generation to succeed
and do not negatively impact the effectiveness of the project.
In addition, lifetimes are represented as generic parameters
like type and constant parameters, and these should always
be marked as used as they do not impact monomorphisation.

This is performed by a mark_used_by_default_parameters

function (shown in Listing 14) which takes the DefId of an
item and its generics.
ty::Generics is the result of calling the generics_of

query and has a params field containing vector of generic
parameters for the current item. The generics of the par-
ent, despite being in scope, are not included in this vector.
ty::Generics also has a parent field with the DefId of the
parent item (if there is one), generics_of can be invoked
on that to get the parent parameters.

For example, while a closure inherits the generic parame-
ters of its parent item (they are in scope), generics.params
only contains the generic parameters defined on the closure
(only the synthetic parameters), and generics.parent con-
tains the DefId of the parent item with the real generic
parameters.

This structure is taken advantage of by
mark_used_by_default_parameters. By checking if a item
is a closure or generator, it can mark all parameters as used
indiscriminately, falling back to only-lifetime-parameters oth-
erwise. mark_used_by_default_parameters proceeds to in-
voke itself recursively with the parent’s generics when they
exist.

Next, the analysis calls the optimized_mir query to get

8

1 fn mark_used_by_default_parameters<'tcx>(
2 tcx: TyCtxt<'tcx>,
3 def_id: DefId,

4 generics: &'tcx ty::Generics,

5 used_parameters: &mut BitSet<u32>,

6) {

7 if !tcx.is_trait(def_id)

8 && (tcx.is_closure(def_id)

9 || tcx.type_of(def_id).is_generator())

10 {

11 for param in &generics.params {

12 used_parameters.insert(param.index);

13 }

14 } else {

15 for param in &generics.params {

16 if param.is_lifetime() {

17 used_parameters.insert(

18 param.index);

19 }

20 }

21 }

22

23 if let Some(parent) = generics.parent {

24 mark_used_by_default_parameters(

25 tcx, parent, tcx.generics_of(parent),

26 used_parameters);

27 }

28 }

Listing 14: Used-by-default parameters

the MIR body for the current item and uses a MIR visitor
to traverse it. Only three components of the MIR need to
be visited by the analysis: locals, types and constants.
visit_local_decl is invoked for each local variable in the

item’s MIR before the MIR is traversed. This analysis’ im-
plementation of visit_local_decl calls super_local_decl
(which proceeds with traversal as normal) for all but one
case: If the current item is a closure or generator and if the
local currently being visited is the first local, then it returns
early.

In the MIR, the first local for a closure or generator is
a reference to the closure of generator itself. If the anal-
ysis proceeded to visit this local as normal, then it would
eventually visit the substitutions of the closure or genera-
tor. Unfortunately, this would result in all inherited generic
parameters for a closure always being considered used, de-
feating the point of the analysis.
visit_const and visit_ty are invoked for each constant

and type in the MIR, and are where the visitor “bottoms
out”. This analysis’ implementation of visit_const and
visit_ty call a visit_foldable function (which isn’t part
of the MIR visitor).
visit_foldable takes any type which implements

TypeFoldable and checks if the type has any type or con-
stant parameters before visiting it with this analysis’ type
visitor.

In the type visitor, the analysis traverses the structure of a
type or constant and looks for ty::Param and
ConstKind::Param, setting the index from each within the
BitSet, marking the parameter as used. In addition, the
type visitor also special-cases closures and generators. In-

stead of traversing the closure or generator type, the analysis
is invoked recursively on the closure or generator, and any
parameters from the parent which were used in the closure
or generator are marked as used in the parent.

The analysis was significantly more complex during imple-
mentation and had to special-case some casts, call and drop
terminators to avoid marking parameters as used unneces-
sarily, often in order to avoid parts of the compiler which
were previously always monomorphic. However, during in-
tegration of the analysis, as support for polymorphic MIR
during codegen was improved, and these special-cases were
removed.

Some generic parameters are only used in the bounds of
another generic parameter. After the analysis has detected
which generic parameters are used in the body of the item,
the predicates of the item are checked for uses of unused
generic parameters in the bounds on used generic parame-
ters.

1 fn bar<I>() {}

2

3 fn foo<I, T>(_: I)

4 where

5 I: Iterator<Item = T>,

6 {

7 bar::<I>()

8 }

Listing 15: Example of generic parameter use in predicate

Consider the example shown in Listing 15. foo has two
generic parameters, I and T, and uses I in the substitutions
of a call to bar. If only the body of foo was analysed then
T would be considered unused despite it being clear that T

is used in the iterator bound on I.

3.2.1 Testing
To test of the analysis, a debugging flag, -Z polymorphize-

errors, is added, which emits compilation errors on items
with unused generic parameters, an example of which is
shown in Listings 16 and 17.

By emitting compilation“errors”, the project leverages the
existing error diagnostics infrastructure to enable introspec-
tion into the compiler internals from a test written at the
Rust source-code level.

1 struct Foo<F>(F);

2

3 impl<F: Default> Foo<F> {

4 // Function has an unused generic

5 // parameter from impl.

6 pub fn unused_impl() {

7 //~^ ERROR item has unused generic parameters

8 }

9 }

Listing 16: Example of an analysis test

In addition, this approach integrates well into rustc’s ex-
isting test infrastructure, which writes all of the error output
for a test into a stderr file and checks that the output hasn’t
changed by comparison with that file. In addition, anywhere
an error is expected is annotated in the test source.

9

1 error: item has unused generic parameters

2 --> $DIR/functions.rs:38:12

3 |

4 LL | impl<F: Default> Foo<F> {

5 | - generic parameter `F` is unused

6 LL | // Function has an unused generic

7 LL | // parameter from impl.

8 LL | pub fn unused_impl() {

9 | ^^^^^^^^^^^

Listing 17: Example of an analysis test error

3.3 Implementing polymorphisation in rustc
Integration of the analysis’ results into the compiler re-

quired significant debugging and many targeted modifica-
tions where previously only monomorphic types and MIR
were expected.

Throughout rustc’s code generation infrastructure, the
ty::Instance type is used. Instance is constructed through
use of Instance::resolve which takes a
(DefId, SubstsRef<'tcx>) pair and returns an Instance

only if there is enough information to identify a specific func-
tion which will be generated. In a monomorphic context,
after coherence and type-checking, Instance::resolve will
always succeed.
Instance::polymorphize is introduced to apply the re-

sults of the used_generic_params analysis to an Instance.
For each parameter in a SubstsRef<'tcx>, the matching in-
dex in the analysis’ BitSet is checked to determine whether
the parameter was used. If the parameter was used, then
the current parameter is kept. If the parameter was unused,
then the parameter is replaced with an identity substitu-
tion. During implementation, replacing the parameter with
a new ty::Unused type was considered, but it was hypoth-
esised that this would require more changes to the compiler
than an identity substitution.

For example, given an unsubstituted type containing
ty::Param(0), if the parameter were considered used by the
analysis, then it would be substituted by the real type, but,
if the parameter were considered unused, then it would be
substituted with ty::Param(0) and remain the same.

During monomorphisation collection, as described in Sec-
tion 3.1.5, when a mono item is identified, it is added to a
set. This project concerns itself with one kind of mono item,
a MonoItem::Fn which contains an Instance type. When a
new MonoItem::Fn is created, Instance::polymorphize is
invoked before it is added to the final mono item set. This
has the effect of reducing the number of mono items.

1 fn foo<A, B>(_: B) { }

2

3 fn main() {

4 foo::<u64, u32>(1);

5 foo::<u32, u32>(2);

6 foo::<u16, u32>(3);

7 }

Listing 18: Example of an polymorphisation deduplication

Consider the example in Listing 18, monomorphisation
would normally produce three mono items (and three copies
of the function):

• foo::<u16, u32>

• foo::<u32, u32>

• foo::<u64, u32>

However, with the analysis, only a single mono item would
be produced: foo::<T, u32>.

rustc’s code generation iterates over the mono items col-
lected and generates LLVM IR for each, adding the result
to an LLVM module. By de-duplicating during monomor-
phisation collection, polymorphisation “falls out” of the way
the compiler is structured (though some more changes are
required).

In particular, various changes to code generation were re-
quired wherever another Instance is referenced. For exam-
ple, when generating LLVM IR for a TerminatorKind::Call

(a call or invoke instruction in LLVM), an Instance is
generated to determine the exact item which is being in-
voked and its mangled symbol name. Without applying the
Instance::polymorphize function, the instruction would
refer to the mangled symbol for the unpolymorphised func-
tion, which no longer exists.

3.3.1 Upstream monomorphisations
rustc will avoid performing monomorphisation of an item

from an upstream crate if the compiled upstream crate al-
ready contains a monomorphisation for the given substitu-
tions and it can just be linked to.

Whether monomorphisation should be performed locally
is handled by a should_codegen_locally function which
checked whether upstream monomorphisations where avail-
able for a given Instance. should_codegen_locally is in-
voked before a mono item is created (and polymorphisation
occurs), so it looks for an unpolymorphised monomorphi-
sation in the upstream crate. However, if the item would
be polymorphised then the upstream crate would only con-
tain a polymorphised copy, which would result in unnec-
essary code generation when compiling the current crate.
should_codegen_locally was changed to always check for
a polymorphised monomorphisation in the upstream crate.

3.3.2 Specialisation
In Rust, data structures are defined separately from their

methods. Multiple impl blocks can exist which implement
methods on a type. For generic types, impl blocks can pick
concrete types for parameters or remain generic, but mul-
tiple impls cannot overlap. Specialisation is an unstable
feature in Rust which enables impl blocks to overlap if one
block is clearly “more specific” than another.
Instance::resolve can only resolve specialised functions

of traits under certain circumstances and detects whether
further specialisation can occur by whether the item needs
substitution (i.e. has unsubstituted type or constant param-
eters). After integration of polymorphisation, this check had
to be more robust. In particular, polymorphisation meant
that closure types in Instance::resolve could need sub-
stitution (by containing a ty::Param from an unused par-
ent parameter) and would thus “need substitution” for the
purposes of the specialisation check, despite this having no
impact on whether the item was further specialisable.

Initially, this was resolved by implementing a fast type
visitor which checked for generic parameters, but would not
visit the parent substitutions of a closure or generator. How-
ever, this check is in the “fast path” and a visitor would

10

have been too expensive, so this was replaced by a addition
to the TypeFlags infrastructure within the compiler (after
some refactoring [1] enabled this change), shown partially in
Listing 19.

1 // ...

2 &ty::Closure(_, ref substs) => {

3 let substs = substs.as_closure();

4 let should_remove_further_specializable =

5 !self.flags.contains(

6 STILL_FURTHER_SPECIALIZABLE);

7 self.add_substs(substs.parent_substs());

8 if should_remove_further_specializable {

9 self.flags -= STILL_FURTHER_SPECIALIZABLE;

10 }

11

12 self.add_ty(substs.sig_as_fn_ptr_ty());

13 self.add_ty(substs.kind_ty());

14 self.add_ty(substs.tupled_upvars_ty());

15 }

16 // ...

Listing 19: Snippet of type flags infrastructure

3.3.3 Shims
As described in Section 3.1.4, rustc generates shim func-

tions to support language features like dropping.
rustc’s infrastructure surrounding shims and code gen-

eration required that Instances were monomorphic. This
would cause problems for the interaction between polymor-
phisation and all sorts of shims, but drop glue is the simplest
(Listing 20 has a minimised test case which would reproduce
this issue with earlier versions of the implementation).

1 pub struct OnDrop<F: Fn()>(pub F);

2

3 impl<F: Fn()> Drop for OnDrop<F> {

4 fn drop(&mut self) { }

5 }

6

7 fn foo<R, S: FnOnce()>(

8 _: R,

9 _: S,

10) {

11 let bar = || {

12 let _ = OnDrop(|| ());

13 };

14 let _ = bar();

15 }

16

17 fn main() {

18 foo(3u32, || {});

19 }

Listing 20: Test case for polymorphisation and drop shims

Instance types are composed of two parts - a
SubstsRef<'tcx> and a InstanceDef. For normal functions,
InstanceDef::Item(DefId) is the variant of InstanceDef

which is used. However, for drop glue, a
InstanceDef::DropGlue(DefId, Option<Ty<'tcx>>) variant
is used, where the Ty<'tcx> is the type that the shim is being

generated to drop. InstanceDef::DropGlue’s DefId always
referred to the drop_in_place function.

With polymorphisation, the Ty<'tcx> can contain unsub-
stituted parameters and that type ends up in the gener-
ated MIR for the shim. Then, during code generation, the
SubstsRef<'tcx> which contains the same identity param-
eters would be applied to the Ty<'tcx>, resulting in double
substitution (which causes an “substitution failure” internal
compiler error).

For example, drop_in_place::<Vec<T>>’s shim produces
a MIR body referring to Vec<T> but which also is going
to get monomorphised by { T -> Vec<T> }, resulting in
Vec<Vec<T>> which is nonsense.

Listing 20 highlights this issue where a closure (which con-
tains reference to unused generic parameters from the par-
ent) is moved into a type which implements Drop and would
result in a drop shim being generated.

This case could be detected in the analysis by special-
casing TerminatorKind::Drop, but this breaks down when
the test case becomes more complex, as shown in Listing
21. In Listing 21, the closure is defined and analysed in foo

(correctly determining that no parent parameters are used),
but referenced by a type which implements Drop another
function. To detect this case, the analysis would need to be
made transitive, but this is not possible due to limitations of
the query system regarding cycles (as described in Section
3.1.1).

1 pub struct OnDrop<F: Fn()>(pub F);

2

3 impl<F: Fn()> Drop for OnDrop<F> {

4 fn drop(&mut self) { }

5 }

6

7 fn bar<F: FnOnce()>(f: F) {

8 let _ = OnDrop(|| ());

9 f()

10 }

11

12 fn foo<R, S: FnOnce()>(

13 _: R,

14 _: S,

15) {

16 let bar = || {

17 bar(|| {})

18 };

19 let _ = bar();

20 }

21

22 fn main() {

23 foo(3u32, || {});

24 }

Listing 21: Transitive test case for polymorphisation and
drop shims

Preliminary work to remove the requirement that Instances
be monomorphic was completed in PR #69935 [25] which
resolved this issue without modification of the analysis.

4. EVALUATION
To evaluate the project, the performance of the compiler

on a set of benchmarks is compared with a build of the

11

compiler without this project’s changes applied.
For the purposes of evaluation, the compiler is built in

release configuration from the Git commit with the hash
2f2ccd2 [26] (PR #69749 [28] at 9ef1d94 [27] merged with
master, 150322f [8]). 150322f is also built in release config-
uration to act as a baseline for comparisons.

Benchmarking has been performed two times previously
and performance improvements identified from those earlier
runs are implemented in the versions being compared in this
section, as discussed in Section 4.1.

There are 40 benchmarks that are run in rustc’s stan-
dard performance benchmarking suite [29]. Benchmarks are
either real Rust programs from the ecosystem which are im-
portant; real Rust programs from the ecosystem which are
known to stress the compiler; or artificial stress tests.

All benchmarks are compiled with both debug and release
profiles, some benchmarks are run with the check profile.
Each benchmark is run at least four times:

• clean: a non-incremental build.

• baseline incremental: an incremental build starting
with empty cache.

• clean incremental: an incremental build starting
with complete cache, and clean source directory – the
“perfect” scenario for incremental.

• patched incremental: an incremental build starting
with complete cache, and an altered source directory.
The typical variant of this is “println”which represents
the addition of a println! macro somewhere in the
source code.

perf is used to collect information on the execution of each
benchmark, notably: CPU clock; clock cycles; page faults;
memory usage; instructions executed; task clock and wall
time. In addition, for each run, the execution count and
total time spent on each query in rustc’s query system is
also captured - this allows for detailed comparisons between
runs to better determine why there has been a performance
impact.

Furthermore, for a subset of the benchmarks which had an
appreciable performance impact, the number of mono-items
generated are compared.

Benchmarks were performed on a Linux host with an
AMD Ryzen 5 3600 6-Core Processor and 64GB of RAM
with ASLR disabled in both the kernel and userspace.

4.1 Discussion
For a majority of the benchmarks, there was no apprecia-

ble difference in compilation time performance. This result
is expected, the optimisation would have limited impact in
programs which do not contain highly generic code contain-
ing closures.

In those benchmarks that did not show any significant
improvement or regression, any performance differences be-
tween the compiler versions are considered noise. The thresh-
old used for noise is determined by comparing compiler ver-
sions that had no functional changes (“noise runs”) and ob-
serving the impact on performance results on each bench-
mark.

Three benchmarks were appreciably impacted by the opti-
misation implemented in this PR, results for these in Table
1 (complete results available online [29]). The number of

mono items generated for these benchmarks was also com-
pared and the results are shown in Table 2.

• script-servo is the script crate from Servo, the par-
allel browser engine used by Firefox.

• regression-31157 is a small program which caused
large performance regressions in earlier versions of the
Rust compiler.

• ctfe-stress-4 is a small program which is used to
stress compile-time function evaluation.

In applicable benchmarks, compilation time performance
on clean runs generally improves by 3-5%. Incremental runs
generally have lower performance improvements, if any. script-
servo in the release configuration’s results show a 11.4%
slowdown in patched incremental runs. Query profiling shows
that this slowdown comes from LLVM LTO’s optimisations
- this could be due to LTO being more effective and thus
more optimisation taking place or that the polymorphised
functions make LTO more expensive to perform. However,
LTO does not appear to impact performance in the debug
configuration or on other benchmarks. script-servo in the
debug configuration shows a 5.1% performance improvement
which corresponds to an 11 second decrease in compilation
time.
ctfe-stress-4’s mono-item count shows no reduction.

This isn’t surprising as the test contains mostly compile-
time evaluated functions (as expected for a test which aims
to stress compile-time function evaluation). This suggests
that that polymorphisation may have reduced the number
of functions which had to be evaluated at compile-time.

Memory usage across the benchmarks was very varied,
ranging from 19% increases to 15% decreases, depending on
the benchmark. Like instructions executed, memory usage
increases typically happened when incremental compilation
was enabled, while decreases happened when incremental
compilation was disabled.

Earlier benchmarking revealed that re-execution of the
used_generic_params query resulted in increased loads from
crate metadata (intermediate data from compilation of de-
pendencies) so the version of the query benchmarked in
this paper’s results were added to crate metadata and in-
cremental compilation storage. In addition, the BitSet re-
turned from the query was replaced with a u64 as a micro-
optimisation.

5. CONCLUSIONS AND FUTURE WORK
This paper has presented a compilation time optimisation

in the Rust compiler which reduces redundant monomor-
phisation. Currently, this implementation from this project
is being reviewed as PR #69749 [28] in the upstream Rust
project and preliminary work, such as PR #69935 [25], has
landed.

There are no aspects of the Rust language itself which
makes implementation of this optimisation particularly chal-
lenging or complex, most of the difficulty arises from imple-
mentation details of rustc. With that said, rustc is well
suited to having this optimisation implemented.

Due to the structure of the compiler, in an ideal scenario,
only modifications to monomorphisation and call genera-
tion are necessary to enable polymorphisation. Alternate
approaches, such as changing the the MIR of closures and

12

generators to only inherit the parameters that they use from
their parents, would be significantly more invasive and chal-
lenging, as the current system has emergent properties which
enables simplifications in other areas of the compiler.

However, rustc will not always fail eagerly when an invalid
case is encountered, which can significantly lengthen debug-
ging sessions as the root cause of a failure is determined.
This project has provided an excellent opportunity to learn
more about the structure of the Rust compiler, and the tech-
niques used in modern, production compilers to implement
LLVM IR generation.

Implementation of polymorphisation resulted in 3-5% com-
pilation time improvements in some benchmarks. While
there are further improvements that could be made to im-
prove the integration and improve performance when incre-
mental compilation is enabled (see Section 5.1), this is a
promising result.

5.1 Future Work
Investigation into the interaction between polymorphisa-

tion and LTO should be performed to determine the source
of the compile-time regression noticed in the script-servo

benchmark. In addition, tweaking of the circumstances un-
der which the query’s results are cached (both incremen-
tally and cross-crate) should be performed to impact on
performance experienced when incremental compilation is
enabled.

With infrastructure in place to support polymorphic code
generation, the polymorphisation analysis can be extended
to detect more advanced cases. For example, when only the
size of a type is used then monomorphisation can occur for
the distinct sizes of instantiated type; or when the memory
representation of a type is independent of the representation
of its generic parameters, such as Vec<T> (because the T is
behind indirection), functions like Vec::len can be poly-
morphised.

Furthermore, the integration currently doesn’t fully work
with Rust’s new symbol mangling scheme, which isn’t yet
enabled by default - support for this could be added.

6. ACKNOWLEDGEMENTS
Thanks to Eduard-Mihai Burtescu, Niko Matsakis and ev-

eryone else in the Rust compiler team for their assistance
and time during this project. In addition, thanks to Michel
Steuwer for his comments and guidance throughout the year.

7. REFERENCES
[1] E.-M. Burtescu. rustc: keep upvars tupled in

Closure,Generatorsubsts., 2020 (accessed March 25,
2020).
https://github.com/rust-lang/rust/pull/69968.

[2] S. K. Debray, W. Evans, R. Muth, and B. De Sutter.
Compiler techniques for code compaction. ACM Trans.
Program. Lang. Syst., 22(2):378–415, Mar. 2000.

[3] I. Dragos and M. Odersky. Compiling generics through
user-directed type specialization. In Proceedings of the
4th Workshop on the Implementation, Compilation,
Optimization of Object-Oriented Languages and
Programming Systems, ICOOOLPS ’09, page 42–47,
New York, NY, USA, 2009. Association for
Computing Machinery.

[4] T. J. Edler von Koch, B. Franke, P. Bhandarkar, and
A. Dasgupta. Exploiting function similarity for code
size reduction. In Proceedings of the 2014
SIGPLAN/SIGBED Conference on Languages,
Compilers and Tools for Embedded Systems, LCTES
’14, page 85–94, New York, NY, USA, 2014.
Association for Computing Machinery.

[5] J. Han, R. Fujino, R. Tamura, M. Shimaoka,
H. Mikami, M. Takamura, S. Kamiya, K. Suzuki,
T. Miyajima, K. Kimura, and et al. Reducing
parallelizing compilation time by removing redundant
analysis. In Proceedings of the 3rd International
Workshop on Software Engineering for Parallel
Systems, SEPS 2016, page 1–9, New York, NY, USA,
2016. Association for Computing Machinery.

[6] R. Jung, H.-H. Dang, J. Kang, and D. Dreyer. Stacked
borrows: An aliasing model for rust. Proc. ACM
Program. Lang., 4(POPL), Dec. 2019.

[7] D.-H. Kim and H. J. Lee. Iterative procedural
abstraction for code size reduction. In Proceedings of
the 2002 International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems,
CASES ’02, page 277–279, New York, NY, USA, 2002.
Association for Computing Machinery.

[8] T. R. P. Language. commit 150322f, 2020 (accessed
March 25, 2020).
https://github.com/rust-lang/rust/commit/

150322f86d441752874a8bed603d71119f190b8b.

[9] D. Leopoldseder, L. Stadler, T. Würthinger, J. Eisl,
D. Simon, and H. Mössenböck. Dominance-based
duplication simulation (dbds): Code duplication to
enable compiler optimizations. In Proceedings of the
2018 International Symposium on Code Generation
and Optimization, CGO 2018, page 126–137, New
York, NY, USA, 2018. Association for Computing
Machinery.

[10] Microsoft. Language server protocol, 2020 (accessed
March 29, 2020). https://microsoft.github.io/
language-server-protocol/.

[11] S. Overflow. Stack overflow developer survey 2016,
2016 (accessed March 25, 2020).
https://insights.stackoverflow.com/survey/

2016#technology-most-loved-dreaded-and-wanted.

[12] S. Overflow. Stack overflow developer survey 2017,
2017 (accessed March 25, 2020).
https://insights.stackoverflow.com/survey/

2017#most-loved-dreaded-and-wanted.

[13] S. Overflow. Stack overflow developer survey 2018,
2018 (accessed March 25, 2020).
https://insights.stackoverflow.com/survey/

2018/#most-loved-dreaded-and-wanted.

[14] S. Overflow. Stack overflow developer survey 2019,
2019 (accessed March 25, 2020). https://insights.
stackoverflow.com/survey/2019#technology-_

-most-loved-dreaded-and-wanted-languages.

[15] D. Petrashko, V. Ureche, O. Lhoták, and M. Odersky.
Call graphs for languages with parametric
polymorphism. In Proceedings of the 2016 ACM
SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2016, page 394–409, New
York, NY, USA, 2016. Association for Computing

13

https://github.com/rust-lang/rust/pull/69968
https://github.com/rust-lang/rust/commit/150322f86d441752874a8bed603d71119f190b8b
https://github.com/rust-lang/rust/commit/150322f86d441752874a8bed603d71119f190b8b
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://insights.stackoverflow.com/survey/2016#technology-most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2016#technology-most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2017#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2017#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2018/#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2018/#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2019#technology-_-most-loved-dreaded-and-wanted-languages
https://insights.stackoverflow.com/survey/2019#technology-_-most-loved-dreaded-and-wanted-languages
https://insights.stackoverflow.com/survey/2019#technology-_-most-loved-dreaded-and-wanted-languages

Machinery.

[16] J. Stone. Reduce the genericity of closures in the
iterator traits, 2019 (accessed December 3, 2019).
https://github.com/rust-lang/rust/pull/62429.

[17] J. Stone. Reduce the genericity of many closures, 2019
(accessed December 3, 2019).
https://github.com/rayon-rs/rayon/pull/673.

[18] N. Stucki and V. Ureche. Bridging islands of
specialized code using macros and reified types. In
Proceedings of the 4th Workshop on Scala, SCALA
’13, New York, NY, USA, 2013. Association for
Computing Machinery.

[19] T. R. S. Team. State of rust survey 2018, 2018
(accessed March 25, 2020). https://blog.rust-lang.
org/2018/11/27/Rust-survey-2018.html.

[20] T. R. S. Team. State of rust survey 2019 (wip), 2020
(accessed March 25, 2020). https://github.com/
rust-lang/blog.rust-lang.org/pull/544.

[21] D. Tolnay. Instantiate fewer copies of a closure inside
a generic function, 2017 (accessed December 3, 2019).
https://github.com/rust-lang/rust/issues/46477.

[22] J. Turner. State of rust survey 2017, 2017 (accessed
March 25, 2020). https://blog.rust-lang.org/
2017/09/05/Rust-2017-Survey-Results.html.

[23] V. Ureche, M. Stojanovic, R. Beguet, N. Stucki, and
M. Odersky. Improving the interoperation between
generics translations. In Proceedings of the Principles
and Practices of Programming on The Java Platform,
PPPJ ’15, page 113–124, New York, NY, USA, 2015.
Association for Computing Machinery.

[24] V. Ureche, C. Talau, and M. Odersky. Miniboxing:
Improving the speed to code size tradeoff in
parametric polymorphism translations. In Proceedings
of the 2013 ACM SIGPLAN International Conference
on Object Oriented Programming Systems Languages
& Applications, OOPSLA ’13, page 73–92, New York,
NY, USA, 2013. Association for Computing
Machinery.

[25] D. Wood. codegen/mir: support polymorphic
‘instancedef‘s, 2020 (accessed March 25, 2020).
https://github.com/rust-lang/rust/pull/69935.

[26] D. Wood. commit 2f2ccd2, 2020 (accessed March 25,
2020).
https://github.com/rust-lang/rust/commit/

2f2ccd26f9e4af93df8495c3d7a2fec418590f97.

[27] D. Wood. commit 9ef1d94, 2020 (accessed March 25,
2020).
https://github.com/rust-lang/rust/commit/

9ef1d943be1850e1f486ab9732e545dfd99d1fc8.

[28] D. Wood. Polymorphization, 2020 (accessed March 25,
2020).
https://github.com/rust-lang/rust/pull/69749.

[29] D. Wood. rustc performance data, 2020 (accessed
March 29, 2020).
https://perf.rust-lang.org/compare.html?start=

150322f86d441752874a8bed603d71119f190b8b&end=

2f2ccd26f9e4af93df8495c3d7a2fec418590f97.

14

https://github.com/rust-lang/rust/pull/62429
https://github.com/rayon-rs/rayon/pull/673
https://blog.rust-lang.org/2018/11/27/Rust-survey-2018.html
https://blog.rust-lang.org/2018/11/27/Rust-survey-2018.html
https://github.com/rust-lang/blog.rust-lang.org/pull/544
https://github.com/rust-lang/blog.rust-lang.org/pull/544
https://github.com/rust-lang/rust/issues/46477
https://blog.rust-lang.org/2017/09/05/Rust-2017-Survey-Results.html
https://blog.rust-lang.org/2017/09/05/Rust-2017-Survey-Results.html
https://github.com/rust-lang/rust/pull/69935
https://github.com/rust-lang/rust/commit/2f2ccd26f9e4af93df8495c3d7a2fec418590f97
https://github.com/rust-lang/rust/commit/2f2ccd26f9e4af93df8495c3d7a2fec418590f97
https://github.com/rust-lang/rust/commit/9ef1d943be1850e1f486ab9732e545dfd99d1fc8
https://github.com/rust-lang/rust/commit/9ef1d943be1850e1f486ab9732e545dfd99d1fc8
https://github.com/rust-lang/rust/pull/69749
https://perf.rust-lang.org/compare.html?start=150322f86d441752874a8bed603d71119f190b8b&end=2f2ccd26f9e4af93df8495c3d7a2fec418590f97
https://perf.rust-lang.org/compare.html?start=150322f86d441752874a8bed603d71119f190b8b&end=2f2ccd26f9e4af93df8495c3d7a2fec418590f97
https://perf.rust-lang.org/compare.html?start=150322f86d441752874a8bed603d71119f190b8b&end=2f2ccd26f9e4af93df8495c3d7a2fec418590f97

Table 1: Compile-time Performance Results (Instructions Executed)

Benchmark
Profile Average Minimum Maximum
Mode Instructions (150322f) Instructions (2f2ccd2) Difference (%)

script-servo

Release 1.4% -2.4% 11.4%
Clean 2,055,023,148,841 2,005,849,839,832 -2.4%
Baseline Incremental 3,121,194,565,069 3,077,410,967,110 -1.4%
Clean Incremental 90,681,473,264 90,853,410,015 0.2%
Patched Incremental
(println! in depen-
dency)

1,095,860,923,599 1,117,792,391,471 2.0%

Patched Incremental
(println!)

442,478,442,625 492,780,600,788 11.4%

Patched Incremental
(commit 8b0f58c8a)

3,043,338,800,878 2,998,036,491,796 -1.5%

script-servo

Debug -1.4% -5.1% 1.8%
Clean 667,901,459,840 633,560,959,928 -5.1%
Baseline Incremental 1,523,791,662,564 1,487,014,053,598 -2.4%
Clean Incremental 95,788,373,594 95,656,537,038 -0.1%
Patched Incremental
(println! in depen-
dency)

109,780,442,755 111,773,769,666 1.8%

Patched Incremental
(println!)

101,164,767,648 100,959,856,263 -0.2%

Patched Incremental
(commit 8b0f58c8a)

1,340,727,740,661 1,307,554,829,275 -2.5%

regression-31157

Release 1.8% 0.7% 3.4%
Clean 20,909,557,684 21,060,032,968 0.7%
Baseline Incremental 19,035,673,820 19,253,666,422 1.1%
Clean Incremental 635,341,137 647,334,533 1.9%
Patched Incremental
(println!)

7,799,412,422 8,065,114,525 3.4%

ctfe-stress-4

Check -1.8% -2.9% 0.1%
Clean 53,140,621,042 51,592,420,003 -2.9%
Baseline Incremental 71,333,125,770 69,431,948,215 -2.7%
Clean Incremental 4,862,403,451 4,865,044,498 0.1%

ctfe-stress-4

Debug -1.8% -2.8% 0.1%
Clean 54,487,817,509 53,050,150,847 -2.8%
Baseline Incremental 72,770,459,110 70,890,609,287 -2.6%
Clean Incremental 4,876,267,173 4,879,015,542 0.1%

ctfe-stress-4

Release -1.8% -2.8% 0.1%
Clean 54,675,367,364 53,147,068,455 -2.8%
Baseline Incremental 72,722,515,906 70,858,424,696 -2.6%
Clean Incremental 4,876,551,941 4,879,084,682 0.1%

Table 2: Mono Item Results

benchmark profile count (150322f) count (2f2ccd2)

script-servo release 213,642 207,642
script-servo debug 194,509 188,763
regression-31157 release 3635 3608
regression-31157 debug 2905 2881
ctfe-stress-4 release 13 13
ctfe-stress-4 debug 13 13

15

	Introduction
	Background
	Monomorphisation-related Optimisations
	Code Size Optimisations
	Compilation Time Optimisations

	Polymorphisation
	The Rust Compiler, rustc
	Query System
	Types and Substitutions
	MIR
	Shims
	Monomorphisation

	Analysis
	Testing

	Implementing polymorphisation in rustc
	Upstream monomorphisations
	Specialisation
	Shims

	Evaluation
	Discussion

	Conclusions and Future Work
	Future Work

	Acknowledgements
	References

